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SUMMARY:  
An analytical model is proposed to predict the wind fields in tornado-like vortices after touch-down stage. The radial 
and vertical velocities are modeled from the mass conservation and the tangential velocity is derived from the 
momentum conservation. Three velocity components in the corner region of tornado-like vortices are well explained 
by the proposed model. The predicted three velocity components show good agreement with those obtained from the 
numerical simulation using the LES turbulence model.  
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1. INTRODUCTION 
Tornadoes-like vortices after touch-down stage show three-dimensional complex flow fields as 
indicated by Ishihara et al. (2011). The wind field in the corner region (the inner region) is 
important for structure design. An analytical model is required to clearly explain the physical 
processes and accurately predict the wind field in tornadoes-like vortices. 

The wind field of tornadoes-like vortices has been investigated by laboratory simulators (e.g., 
Matsui and Tamura (2006)), but measurements of the corner region are limited because it is three-
dimensional and close to the ground surface. On the other hand, Ishihara et al. (2011) developed a 
Ward-type numerical simulator using LES model and reproduced the tornado-like vortices. 

For structure design, the tangential velocity model by Rankine (1882) has been widely used. 
However, it cannot express three-dimensional wind field in the corner region due to lack of model 
for the radial and vertical velocities. To express the three-dimensional wind field, an analytical 
model is proposed by Burgers (1948) and Rott (1958). While Burgers-Rott model presents that the 
advection term in the radial momentum equation is zero, Ishihara et al. (2011) indicated that the 
increase of tangential velocity in the corner region is caused by this advection term. However, a 
model to predict the radial and vertical velocities in the corner region has not been proposed yet. 

In this study, an analytical model to predict the mean wind field of tornado-like vortices is 
proposed. The three-dimensional wind fields are obtained by numerical simulations and the 
dominant terms in the mass and momentum conservations are examined in Section 2. The wind 
fields in the cyclostrophic balance and the outer regions are derived and used as the boundary 
conditions for the corner flow in Section 3.1. The three velocity components in the corner region 
are then derived from the mass and momentum conservation to explain the increase of the 
tangential velocity in Section 3.2.   



2. WIND FIELDS IN TORNADO-LIKE VORTICES 
In this study, the numerical simulator built by Liu and Ishihara (2015) is used and six cases with 
the guide-vane angle Φ from 69.4°	to 84.4° are simulated. Fig. 1 shows schematic view of the 
flow field in tornado-like vortices. The terms in mass and momentum conservation for time-
averaged axisymmetric flow field are plotted in Fig. 2. In the cyclostrophic balance region, the 
centrifugal force balances with the radial pressure gradient. In the corner region, the advection 
terms due to the radial and vertical velocities appear. The advection term generated by the 
vertical velocity disappears in the outer region since the vertical velocity is approximately zero in 
this region. The dominant terms in mass and momentum conservations are shown in Table 1. In 
this study, the coordinates and velocities are normalized and used hereafter. 

 

Figure 1. Schematic view of the flow field in tornado-like vortices 
 
Table 1. Dominant terms in mass and momentum conservations 

 
 
3. ANALYTICAL MODEL FOR THE CORNER FLOW 
3.1 Wind profiles at the top and side boundaries of corner region 
The radial and vertical velocity components in the cyclostrophic balance and the outer regions 
are required as the boundary conditions for the corner flow. The vertical velocity component W 
in the cyclostrophic balance region is obtained from Eq. (1) and the tangential velocity 
component V  is from Eq. (2). The three velocity components at the boundary of the 
cyclostrophic balance region can be expressed by U!, V! and W!, U!	is zero, V! and W! are 
given by Eq. (7) and Eq. (8). V! is almost same as that by Burgers-Rott model. The difference is 
that σ" in the proposed model is assumed as a function of the outer circulation Γ#,%, which is an 

 
(a) In the cyclostrophic balance region 

 
(b) In the boundary layer 

Figure 2. Radial momentum balance 
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input parameter. W!	is composed of the updraft and downdraft components and is radially 
distributed as a Gaussian-like shape as shown in Fig. 1. The updraft component is modeled by 
the axisymmetric average of Gaussian distributions with their center located at r = 1. The 
downdraft component is also modeled by a Gaussian distribution with its center located at the 
center of vortex. A linear sum of the updraft and downdraft components is taken so that W! is 
zero at the center of vortex for simplicity. K is the variance of Gaussian distributions. r& is the 
outer core radius as mentioned by Lewellen and Lewellen (2007) as the outer boundary of 
vertical core flow. Here, r& is defined by the twice radial location of the updraft peak and is 2 in 
the cyclostrophic balance region.	α is the total flow rate. X is the magnitude of vertical velocity 
and is set as 1 in the cyclostrophic balance region. ∂P/ ∂r is the radial pressure gradient and is 
assumed as a constant in all regions as mentioned by Ishihara et al. (2011).  
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The radial inflow velocity in the outer region U' expressed by Eq. (10) is proportional to 
1/r, according to Eq. (3). The vertical distribution is approximated using δ and z∗, which are 
the height at which U' is zero, and the height of the boundary layer. c) is a constant obtained 
by ∂U/ ∂z(z = z∗) = 0, and β is the flow rate. W' is zero and V' = V! in the outer region. 
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3.2 Wind field in the corner region 
The radial and vertical velocity components in the corner region U*	and W* are simply solved   
using the mass conservation. The radial distribution of W* is assumed to be proportional to the 
core radius r&(z), as in Lewellen and Lewellen (2007). Considering the boundary conditions 
with W!, W* can be derived as equation (15). The two unknowns are r&(z) and the magnitude 
of vertical velocity X(z). In this study, we propose the shape of r& and derive the distribution 
of X. r& is approximated by Eq. (11), which is an increasing from r&+ at the ground surface to 
2 at the boundary with the cyclostrophic balance region z = δ∗. c" is a constant obtained by 
dr&/dz(z = δ∗) = 0. δ∗ = 2δ and r&+ = 1.2 are adopted for all cases.  
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By substituting Eq. (16) into Eq. (5), The radial velocity component U* is derived as a 
function of X(z)  as shown in Eq. (17). The first term represents for the radial outflow 
expanding the core and becomes negligible in the outer region. The second term is due to the 
radial inflow and an integral form of mass conservation is applied on a cylindrical volume at the 
outer region as shown in Eq. (12). The equality between U(r ≫ r&) and U'  derives the 
differential equation of X(z) as shown in Eq. (13), which is solved as Eq. (14). Here, predicted 
U* and W* by the proposed model agree well with those by CFD as shown in Fig. 3 (b) and (c). 
Substituting U* and W* into Eq. (6), V* is obtained as Eq. (15) and predicted distributions also 
show good agreement with those by CFD as shown in Fig. 3 (a). 
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Table 2. Comparison of the conventional and proposed models 

b is an arbitrary constant in Burgers-Rott model 

 
 
4.  CONCLUSIONS 
An analytical model to predict three velocity components in the cyclostrophic balance, outer and 
the corner regions is proposed. The radial and vertical components is analytically derived from 
mass conservation and the tangential velocity in the corner region is derived by the momentum 
conservation in the radial direction. The predicted three velocity components show good 
agreement with those from the numerical simulation using the LES turbulence model. 
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Figure 3. Comparison of three velocity components predicted by the proposed model and those by CFD  
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